Expression Profiling and Structural Characterization of Micro RNAs in Adipose Tissues of Hibernating Ground Squirrels  被引量:3

Expression Profiling and Structural Characterization of Micro RNAs in Adipose Tissues of Hibernating Ground Squirrels

在线阅读下载全文

作  者:Cheng-Wei Wu Kyle K.Biggar Kenneth B.Storey 

机构地区:[1]Department of Biology,Carleton University [2]Biochemistry Department,Schulich School of Medicine and Dentistry,Western University

出  处:《Genomics, Proteomics & Bioinformatics》2014年第6期284-291,共8页基因组蛋白质组与生物信息学报(英文版)

基  金:supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant No. 6793);supported by the NSERC postgraduate fellowships

摘  要:Micro RNAs(mi RNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 mi RNAs in brown(BAT) and white adipose tissue(WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six mi RNAs including let-7a, let-7b, mi R-107, mi R-150, mi R-222 and mi R-31 was significantly downregulated in WAT(P 〈 0.05), which was 16%–54% of euthermic non-torpid control squirrels,whereas expression of three mi RNAs including mi R-143, mi R-200 a and mi R-519 d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more mi RNAs was downregulated in BAT during torpor. We detected reduced expression of 6 mi RNAs including mi R-103 a, mi R-107, mi R-125 b, mi R-21, mi R-221 and mi R-31(48%–70% of control), while only expression of mi R-138 was significantly upregulated(2.91 ± 0.8-fold of the control, P 〈 0.05). Interestingly,mi RNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas mi RNAs with altered expression in BAT during torpor were linked to mitochondrial b-oxidation. mi RPath target prediction analysis showed that mi RNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase(MAPK) signaling, while the mi RNAs upregulated in WAT were linked to transforming growth factor b(TGFb) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-mi RNAs for the mi RNAs used in this study, suggesting no structure-influenced changes in pre-mi RNA processing efficiency in the squirrel. As well, the expression of mi RNA processingenzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of mi RNA expression in adipose tissues may be linkedMicro RNAs(mi RNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 mi RNAs in brown(BAT) and white adipose tissue(WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six mi RNAs including let-7a, let-7b, mi R-107, mi R-150, mi R-222 and mi R-31 was significantly downregulated in WAT(P 〈 0.05), which was 16%–54% of euthermic non-torpid control squirrels,whereas expression of three mi RNAs including mi R-143, mi R-200 a and mi R-519 d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more mi RNAs was downregulated in BAT during torpor. We detected reduced expression of 6 mi RNAs including mi R-103 a, mi R-107, mi R-125 b, mi R-21, mi R-221 and mi R-31(48%–70% of control), while only expression of mi R-138 was significantly upregulated(2.91 ± 0.8-fold of the control, P 〈 0.05). Interestingly,mi RNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas mi RNAs with altered expression in BAT during torpor were linked to mitochondrial b-oxidation. mi RPath target prediction analysis showed that mi RNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase(MAPK) signaling, while the mi RNAs upregulated in WAT were linked to transforming growth factor b(TGFb) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-mi RNAs for the mi RNAs used in this study, suggesting no structure-influenced changes in pre-mi RNA processing efficiency in the squirrel. As well, the expression of mi RNA processingenzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of mi RNA expression in adipose tissues may be linked

关 键 词:Non-coding RNA DICER Ground squirrel Stress adaptation HYPOMETABOLISM 

分 类 号:Q78[生物学—分子生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象