检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东电网责任有限公司电力科学研究院,广东广州510080 [2]湖南大学电气与信息工程学院,湖南长沙410012
出 处:《电池》2014年第6期351-353,共3页Battery Bimonthly
摘 要:研究预测变电站阀控式密封铅酸(VRLA)电池工作寿命的方法。引入小波神经网络(WNN),建立电池工作寿命的WNN模型,再通过实验数据对WNN模型进行训练,得到用于电池运行寿命预测的WNN模型,最后将WNN模型的预测结果与实际结果进行对比。预测的平均相对误差为1.49%,最大相对误差为2.35%。WNN模型可以快速、准确地得到电池的工作寿命,可用于变电站电池工作寿命的预测。A method for predicting substation battery operating life was researched. Wavelet neural network (WNN) was intro- duced, a WNN model of battery operating life was established, then the WNN model was trained with experimental data to get WNN model for battery operating life prediction. Finally, the predicted results of the WNN model and actual data were compared. The average relative error of prediction was 1.49% , the maximum relative error was 2. 35%. The WNN model could get the battery operating life quickly and accurately, was able to use to predict the substation battery operating life.
关 键 词:阀控式密封铅酸(VRLA)电池 工作寿命 小波神经网络
分 类 号:TM912.1[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222