检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学网络智能研究所,重庆市400065
出 处:《系统仿真学报》2014年第12期2944-2949,2956,共7页Journal of System Simulation
基 金:"核高基"重大专项(2009ZX01038-002-002-2);技部"原创动漫软件开发技术人才"计划扶持项目(2009-593)
摘 要:图像特征点匹配算法是增强现实几何一致性技术中的核心算法,目前图像特征点匹配算法耗时较大,准确性较差。提出了一种基于距离约束的改进SURF(Speeded-up Robust Features)算法:在特征点检测阶段,动态构建高斯金字塔图层,提高特征点提取的实时性和准确性;特征点的优化处理,避免提取到的图像特征点出现聚集现象。在特征点匹配阶段,对提取到的特征点构建KD-tree树索引,提高特征匹配的实时性和准确性。实验表明,改进的SURF算法有效地解决了目前方法存在特征提取时间相对较长,特征点匹配误差较大的缺点。Algorithm for feature point matching is the core algorithm of geometric consistency technology in augmented reality area, while algorithms for feature point matching are time-consuming and have poor matching accuracy. An improved SURF (Speeded-up Robust Features) algorithm based on distance constraint was proposed. In process of detecting feature points, Gaussian Pyramid Layers was built dynamically to improve real-time and accuracy. And feature points were optimized to avoid feature points appearing on aggregation. In the stage of feature points' matching, the KD-tree indexes were constructed to improve real-time and accuracy. The experiment results indicate that the improved SURF algorithm effectively solves the problem of the current algorithm.
关 键 词:几何一致性 SURF KD-TREE 聚集 特征匹配
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145