基于RBFNN的风电机组变桨距反推滑模控制  被引量:3

Variable Pitch Backstepping Sliding Mode Control of Wind Turbine Based on RBFNN

在线阅读下载全文

作  者:宋杰 王宪锐 董晓斐 张丹 

机构地区:[1]德州供电公司,山东德州253000

出  处:《计算机仿真》2015年第1期122-126,共5页Computer Simulation

基  金:贵州电网公司重大科技项目(12H0594);四川省科技支撑项目(2011GZ0036)

摘  要:在风力发电变桨距优化控制问题的研究中,针对具有不确定性的非线性风电机组,设计了基于径向基函数神经网络(RBFNN)的风电机组变桨距反推滑模控制器。首先应用精确反馈线性化理论将原非线性系统模型进行全局线性化处理,再应用RBFNN对不确定项进行逼近,结合滑模控制和反推法,设计反推滑模控制器(BSMC),保证了高风速下风机的稳定性,抑制了不确定项对系统的影响,避免了传统反推法存在的计算复杂问题。通过与传统滑模控制器(SMC)进行仿真对比,结果表明,RBFNN-BSMC能够很好地稳定风电机组的输出功率,具有较强的鲁棒性。In this paper, a variable pitch backstepping sliding mode controller of wind turbine based on radial basic function neural network was proposed for wind turbines with great uncertainties. The scheme conducted the original nonlinear system model of the global linearization first Then, on the basis of radial basic function neural network, the uncertainties were approached. And sliding mode control was combined with backstepping method to design backstepping sliding mode controller. The designed controller guaranteeds the stability of wind turbine under high wind speed and restraines the effects of uncertainties on the system, and the explosion of complexity in traditional backstepping design is avoided. Comparing with traditional sliding mode controller, the results of the simulation indicate that the designed controller can stabilize the output power of wind turbines and behave robustly.

关 键 词:风电机组 变桨距控制 精确反馈线性化 径向基函数神经网络 滑模控制 反推法 

分 类 号:TM743[电气工程—电力系统及自动化] TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象