UNIFORMLY CONVERGENT NONCONFORMING ELEMENT FOR 3-D FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM  被引量:1

UNIFORMLY CONVERGENT NONCONFORMING ELEMENT FOR 3-D FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM

在线阅读下载全文

作  者:Hongru Chen Shaochun Chen 

机构地区:[1]College of Science, Henan University of Technology, Zhengzhou 450001, China [2]Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China

出  处:《Journal of Computational Mathematics》2014年第6期687-695,共9页计算数学(英文)

摘  要:In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming CO-cuboid element converges in the energy norm uniformly with respect to the perturbation parameter.In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming CO-cuboid element converges in the energy norm uniformly with respect to the perturbation parameter.

关 键 词:Nonconforming finite element Singular perturbation problem Uniform errorestimates. 

分 类 号:O241.81[理学—计算数学] O241.82[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象