检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东师范大学信息科学与工程学院,济南250014
出 处:《控制与决策》2015年第2期316-320,共5页Control and Decision
基 金:国家自然科学基金项目(90612003);山东省自然科学基金项目(ZR2013FM008);山东省科技发展计划项目(2011GGH20123)
摘 要:人工蜂群(ABC)算法存在着收敛速度不够快、易陷入局部最优的缺陷.针对这一问题,提出一种改进的人工蜂群(DCABC)算法.应用反学习的初始化方法产生初始解,引入分治策略对蜜源进行优化,在采蜜蜂发布更新的蜜源信息后,跟随蜂选择最优蜜源,并采用分治策略进行迭代优化.通过对经典测试函数的反复实验及与其他算法的比较,表明了所提出的算法具有良好的加速收敛效果,提高了全局搜索能力与效率.As a kind of swarm optimization algorithm with good performance, the artificial bee colony (ABC) algorithm is presented in recent years. However, it exist some disadvantages, such as the convergence speed is not fast enough, easy to fall into local optimum and etc. In order to solve this problem, an improved algorithm called DCABC is presented. In this algorithm, the opposition-based learning method is employed when producing the initial population, the divide-and-conquer strategy is adopted to greed update food resources. After employed bees releasing updated food source information, onlookers choose optimal resource based on the divide-and-conquer strategy. Experiments are conducted on a set of 6 benchmark functions, and the results show that DCABC has better performance than several other ABC-based algorithms, especially on the accelerating convergence and the global search ability and efficiency.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.94.230