基于分布式干涉光纤传感网络的通信线路防护系统  被引量:4

Protection system for communication line based on distributed interferometric fiber optic sensor network

在线阅读下载全文

作  者:胡峰[1] 马春侠[2] 崔毅安 史广顺[3] 

机构地区:[1]南京信息职业技术学院通信学院,江苏南京210023 [2]天津工业大学工程教学实训中心,天津300087 [3]南开大学计算机与控制工程学院,天津300071

出  处:《南京理工大学学报》2014年第6期757-762,共6页Journal of Nanjing University of Science and Technology

基  金:天津市科技支撑计划项目(11ZCKFGX01800)

摘  要:提出了一种基于分布式光纤和人工神经网络判别的通信线路防护系统。该系统利用光纤传感器收集通信线路周围的振动信号,运用数字信号处理的方法对原始信号进行处理,通过神经网络判断是否存在针对通信线路的破坏性行为并判别破坏行为的类型,实现对通信线路的防护。系统在定位阶段,基于Mach-Zehnder干涉原理,运用互相关的方法进行实时定位。在数据处理阶段对信号进行抑噪处理,有利于进一步的定位与事件识别工作。在识别阶段使用支持向量机(Support vector machine,SVM)和反向传播(Back propagation,BP)神经网络方法构建了层次化分类器。实验结果表明:信号定位精度达到100 m,系统对七类破坏行为的识别率达到94.35%。A new communication line protection system has been proposed, which is based on the distributed optical fiber and artificial neural network discrimination. The system uses optical fiber sensors to collect the soil vibration signal around communication line. Raw signals are processed via several kind of digital signal processing methods. A hybrid classification system is applied to identify the existence of destructive behavior. An accurate mutual correlation method is designed based on Mach-Zehnder interference principle to locate the position of vibration signals. Wavelet Hilbert transformation method are applied to two level classifier based on Support Vector shrinkage and filter noise and segment the interest signal section. A Machine ( SVM ) and Back Propagation (BP) neural network is designed to identify the type of dangerous behavior. The system has been evaluated under a real application environment. The location deviation is less than 100 m, and the recognition accuracy rate for seven types of dangerous behavior comes to 94.35%. The test results prove the efficiency and precision of the system.

关 键 词:光纤传感网络 数字信号处理 人工神经网络 通信线路安全 

分 类 号:TN913.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象