检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学物理系太阳能研究所,上海200240
出 处:《太阳能学报》2014年第12期2448-2454,共7页Acta Energiae Solaris Sinica
摘 要:提出一种阈值均匀局部二值模式(TULBP)算法。该算法使用均一模式以减少特征值的数量,在保证特征描述准确性的同时,可大大加快计算速度。在该算法基础上,提出基于BP神经网络的缺陷检测算法,使用矩形窗口提取特征值,将复杂的缺陷模式判断转化为神经网络模式识别问题。实验结果表明,该算法在使用单层BP神经网络时,即可达到较高的准确性,抗噪声能力强,适用范围广。In order to detect solar cell defects precisely and break through the limitation of low resolution, an algorithm called Threshold Uniform Local Binary Pattern (TULBP) was proposed. The algorithm used uniform patterns to reduce quantity of characteristic values so that it could ensure accuracy of feature description and quicken computing speed at same time. A BP neural network method with a rectangle testing window to detect defects was also proposed based on TULBP, which transferred the defects detection problems to a pattern recognition problem. The experiment results show that this method can reach high accuracy rate with single layer BP neural work.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229