检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛丽丽[1] 李一[3] 蔡巧玲[1] 孙佩[1] 骆献阳[2] 闫冰[2]
机构地区:[1]厦门大学附属第一医院口腔科,福建361003 [2]厦门大学附属第一医院耳鼻咽喉头颈外科,福建361003 [3]四川大学华西口腔医学院头颈肿瘤外科
出 处:《中华口腔医学杂志》2015年第1期18-22,共5页Chinese Journal of Stomatology
摘 要:目的 研究口腔黏膜鳞状细胞癌、上皮重度异常增生及正常黏膜组织的拉曼光谱特征,以期为拉曼光谱诊断口腔黏膜癌变提供依据.方法 收集手术切除的新鲜口腔黏膜鳞状细胞癌组织56例,重度上皮异常增生组织50例及正常黏膜组织32例,采用配备光纤探头的便携式拉曼光谱仪获取拉曼光谱.应用主成分分析法(principle component analysis,PCA)结合判别函数分析(discriminant function analysis,DFA)对不同组织的光谱数据进行分析,建立诊断模型对口腔鳞状细胞癌、上皮重度异常增生及正常黏膜的光谱数据进行鉴别,应用交互验证方法对诊断模型进行验证.结果 口腔鳞状细胞癌、上皮重度异常增生及正常黏膜组织间的拉曼光谱存在差异,主要表现为口腔鳞状细胞癌和上皮重度异常增生组织光谱中对应核酸、蛋白质及脂类物质的谱峰明显高于正常黏膜上皮组织;鉴别诊断建模的总体分类准确率达96.4%(133/138),交互验证的分类准确率达92.8%(128/138).结论 口腔鳞状细胞癌和上皮重度异常增生组织中细胞增殖代谢明显高于正常黏膜组织;应用PCA-DFA建立的分类诊断模型可以很好地区分3种不同组织的光谱数据.Objective To investigate the Raman spectral characteristics of oral squamous cell carcinoma,high-grade epithelial dysplasia and normal mucosa.Methods Fifty-six fresh samples of oral carcinoma,50 of high-grade epithelial dysplasia and 32 of normal mucosa were collected.The i-Raman spectrometer with an optical fiber tube was applied to acquire Raman spectrum.The diagnostic model established by principle component analysis(PCA) and discriminant function analysis(DFA) was used to analyze and classify the spectra of different samples.Results There were significant differences among the Raman spectra of these samples.Compared with the spectra of normal mucosa,the spectra of oral carcinoma and dysplasia showed strong peaks which were contributed to nucleic acids,proteins and lipids.The diagnostic models established by PCA-DFA could successfully classify these Raman spectra of different samples with a high accuracy of 96.4% (133/138).The model was evaluated by 'Leave one out' crossvalidation and reached a high accuracy of 92.8%(128/138).Conclusions The proliferation and metabolism of oral squamous cell carcinoma and epithelial high-grade dysplasia are more active than normal mucosa.The diagnostic models established by PCA-DFA can classify these Raman spectra of different samples with a high accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.8