基于交叉验证的地震多属性概率神经网络(PNN)反演在识别热瓦普地区火成岩中的应用  被引量:1

Multi-attribute probabilistic neural network inversion applicated in identifying igneous in RWP area based on cross-validation

在线阅读下载全文

作  者:谢会文[1] 许永忠[2,3] 郑多明[1] 高宏亮[1] 李国会[1] 叶茂林[1] 王双双[2] 

机构地区:[1]中国石油天然气股份有限公司塔里木油田分公司勘探开发研究院,新疆库尔勒841000 [2]中国矿业大学资源与地球科学学院,江苏徐州221116 [3]中国科学院地质与地球物理研究所油气资源研究重点实验室,北京100029

出  处:《中国矿业》2015年第2期154-158,共5页China Mining Magazine

摘  要:新疆塔北地区发育巨厚二叠系火成岩,速度差异较大,而且火山喷发模式难确定,给其下伏低幅度碎屑岩圈闭和岩性圈闭落实带来困难。本文对二叠系火成岩利用概率神经网络反演等方法进行精细的速度场研究。概率神经网络反演是一种典型的非线性反演方法,相比于稀疏脉冲反演,在地震反演过程的非线性问题,具有更好的分辨率。通过逐步回归和交叉验证优选使验证误差最小的属性组合,使反演结果与测井属性有更好的相关性。建立的速度场经验证,更符合火成岩分布与速度变化规律。There developed huge thick Permian Igneous in Tabei area of Xinjiang.The Permian igneous rocks with sharp variation of velocity,affects the process of oil and gas exploration seriously,and makes trap-confirming more difficult.For solving this problem,this paper use Probabilistic Neural Network inversion method to establish igneous velocity field.Compared with CSSI,PNN inversion is a typical nonlinear inversion with its high resolution.At first,agroup of attributes was selected by using Stepwise regression and cross-validation for analyzing and error minimum,to make inversion results have better correlation with log properties.The inversion velocity field was testified to conform the distribution of igneous and velocity changes.

关 键 词:PNN神经网络反演 交叉验证 岩性识别 火成岩 

分 类 号:P361.4[天文地球—地球物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象