检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学可靠性与环境工程技术重点实验室,北京100191
出 处:《系统工程与电子技术》2015年第3期719-724,共6页Systems Engineering and Electronics
基 金:国家自然科学基金(61104132)资助课题
摘 要:在装备保障系统的全寿命周期中,其能力会经历较大的起伏。为了更好地把握保障系统能力演化趋势,本文首先建立反映单位时间内装备保障能力变化量的微分动力方程,并据此推导出装备保障系统的突变模型。通过研究该突变模型分岔点集中各区域的势函数,给出临界点分布情况,可判断装备保障系统的综合控制参数所处区域。根据控制变量的变化趋势,可进一步分析保障系统能力跃变的发生情况,从而为实现其过程控制奠定方法基础。最后给出了相应的算例,表明了论文方法的有效性。During the whole life-cycle of the equipment support system, its support capability will experience large fluctuations. In order to seize preferably its support capability evolution trend, firstly, the differential dynamic equation that reflects the changing quantity of the support capability in unit time is established, and the catastrophe model of the equipment support system is deduced. By studying the potential function of each con trol areas generated by the bifurcation set of the catastrophe model, the distribution condition of the critical points is obtained, and then the area in which the integrated control parameter locates can be judged. According to the change trend of the control variables, the occurrence of the support capability mutation can be analyzed further, and the foundation can be laid to realize process control. Finally, corresponding examples demonstrate the effectiveness of the proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145