3D Nanocomposite Hydrogel Scaffolds Fabricated by Rapid Prototyping for Bone Tissue Engineering  被引量:1

3D Nanocomposite Hydrogel Scaffolds Fabricated by Rapid Prototyping for Bone Tissue Engineering

在线阅读下载全文

作  者:许杜亮 张建光 莫秀梅 

机构地区:[1]College of Chemistry,Chemical Engineering and Biotechnology,Donghua University

出  处:《Journal of Donghua University(English Edition)》2014年第5期630-634,共5页东华大学学报(英文版)

基  金:National Natural Science Foundations of China(Nos.30973105,31271035);Science and Technology Commission of Shanghai Municipality,China(No.11nm0506200);Ph.D.Programs Foundation of Ministry of Education of China(No.20130075110005)

摘  要:Colloidal gels made of oppositely charged nanoparticles are a novel class of hydrogels and can exhibit pseudoplastic behavior which will enable them to mold easily into specific shapes.These moldable gels can be used as building blocks to self-assemble into integral scaffolds from bottom to up through electrostatic forces.However,they are too weak to maintain scaffold morphology just depending on interparticle interactions such as Van der Waals attraction and electrostatic forces especially for bone tissue engineering.In this study,oppositely charged gelatin nanoparticles were firstly prepared by two-step desolvation method,followed by the mixture with water to form colloid gels.To solve the problem of weak mechanical performance of colloid gels, gelatin macromolecules were introduced into the prepared gels to form blend gels.The blend gels can be easily processed into three-dimensional( 3D) porous scaffolds via motor assisted microsyringe( MAM)system,a nozzle-based rapid prototyping technology,under mild conditions.After fabrication the scaffolds were crosslinked by glutaraldehyde( GA,25% solution in water by weight),then the crosslinked gelatin macromolecules network could form to improve the mechanical properties of colloid gels.The average particle size and zeta potential of gelatin nanoparticles were measured by NanoZS instrument.The morphology and microstructures of scaffolds were characterized by macroscopic images.The mechanical properties of the scaffolds were studied by a universal material testing machine.Colloidal gels made of oppositely charged nanoparticles are a novel class of hydrogels and can exhibit pseudoplastic behavior which will enable them to mold easily into specific shapes.These moldable gels can be used as building blocks to self-assemble into integral scaffolds from bottom to up through electrostatic forces.However,they are too weak to maintain scaffold morphology just depending on interparticle interactions such as Van der Waals attraction and electrostatic forces especially for bone tissue engineering.In this study,oppositely charged gelatin nanoparticles were firstly prepared by two-step desolvation method,followed by the mixture with water to form colloid gels.To solve the problem of weak mechanical performance of colloid gels, gelatin macromolecules were introduced into the prepared gels to form blend gels.The blend gels can be easily processed into three-dimensional( 3D) porous scaffolds via motor assisted microsyringe( MAM)system,a nozzle-based rapid prototyping technology,under mild conditions.After fabrication the scaffolds were crosslinked by glutaraldehyde( GA,25% solution in water by weight),then the crosslinked gelatin macromolecules network could form to improve the mechanical properties of colloid gels.The average particle size and zeta potential of gelatin nanoparticles were measured by NanoZS instrument.The morphology and microstructures of scaffolds were characterized by macroscopic images.The mechanical properties of the scaffolds were studied by a universal material testing machine.

关 键 词:colloidal gels rapid prototyping GELATIN NANOPARTICLES SCAFFOLD bone tissue engineering 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象