量子力学中厄米算符本征矢完备性的限制和界定  

The limit and Define of Hermitian Operators Eigenvectors Completeness in Quantum Mechanics

在线阅读下载全文

作  者:王振兴[1] 

机构地区:[1]温州大学物理与电子信息工程学院,浙江温州325035

出  处:《科技创新导报》2014年第34期84-84,86,共2页Science and Technology Innovation Herald

摘  要:从厄米算符矢开始,以完全集合定义出发,以完全集合体系(简称集合体系)为标准.通过讨论集合体系内厄米算符本征矢量完备性限制,从而得出了厄米算符自身体系完备性的一般证明.进而得出完备性应该在是完全集合基础上的完备,严格说起来,谈论一个算符本征矢的完备性时,其立足点是非常特殊的,这时候应该默认这个算符本身就是一个完全集合,或者在说这个算符本征矢为完备组时其空间范围限定为在这个算符定义域和值域所在的希尔伯特空间之内。From the start vector Hermitian operators to fully set definition. In the complete set of the system (referred to as the collection system) as the standard, through discussion and collections within the collection system outside the system Hermitian operators eigenvectors completeness limits to arrive at a Hermitian operators own complete system of general proof. Then come completeness should be based on the complete set of comprehensive, strictly speaking, when talking about a completeness of eigen vectors operator, whose standpoint is very special, that we should default the operator itself is a complete collection or, in saying this operator Eigenvector space when complete set of its range is limited to within the operator domain and range where the Hilbert space.

关 键 词:厄米算符本征矢 完备性 限制 界定 完全集合 希尔伯特空间 

分 类 号:O41[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象