检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学自动化学院,西安710072 [2]上海机电工程研究所,上海201109
出 处:《航天控制》2015年第1期48-53,60,共7页Aerospace Control
摘 要:为有效克服传统弹道优化方法解的收敛性和全局最优性受搜索算法和初始猜测等影响大的问题,提出了基于有理Bezier曲线的弹道造型与优化计算方法。根据边界条件用光滑且只含少量自由参数的有理Bezier曲线形成参数化弹道,采用逆动力学方法计算导弹攻角、速度等变量及参数化弹道性能指标,通过对自由参数寻优得到最优弹道。这种方法将连续的弹道优化问题转换为对很少自由参数的参数优化问题。与传统方法相比,该方法无需求解2点边值问题,不对导弹运动方程组进行离散化,因而鲁棒性强且解的全局最优性和光滑性好。仿真结果及与自适应伪谱法的比较验证了该方法的实用性和有效性。The convergence and optimality of ordinary trajectory optimization method is influenced by many factors such as the initial guess and search algorithm. In view of this, a novel trajectory shaping and opti- mization strategy based on rational Bezier curves is proposed. The unknown trajectory is shaped by using the rational Bezier curves with few free parameters according to the boundary conditions, and the performance index which is based on the inverse dynamic technique and equations of motion is determined. Consequent- ly, the optimal trajectory can be obtained through optimizing the free parameters. Finally, the original con- tinuous optimization problem is translated into a constrained parametric optimization formulation with few unknown optimizers. The resulting optimal trajectory is perfectly smooth and flyable. By comparing with the ordinary trajectory optimization, the problem for solving two-point boundary value is avoided and no discretization on the states and controls is involved in this method, therefore, the accessibility and robustness are guaranteed and the solution can be easy to converge to be perfectly smooth and global optimal. The validity and practicality of the proposed method are demonstrated by comparison simulation.
关 键 词:弹道优化 弹道造型 有理Bezier型弹道 遗传算法
分 类 号:V19[航空宇航科学与技术—人机与环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117