考虑稳定性要求的特征选择方法  

A feature selection algorithm taking account of stability

在线阅读下载全文

作  者:季金胜[1,2] 郭艺友 霍宏[1,2] 方涛[1,2] 

机构地区:[1]上海交通大学自动化系,上海200240 [2]系统控制与信息处理教育部重点实验室,上海200240

出  处:《高技术通讯》2014年第11期1203-1209,共7页Chinese High Technology Letters

基  金:973计划(2012CB719903);国家自然科学基金委创新研究群体(61221003);国家自然科学基金青年科学基金(41101386)和国家自然科学基金(41071256)资助项目

摘  要:为了提高特征选择的稳定性和降低因样本数据变化引起的选择结果波动,提出了一种考虑稳定性要求的过滤式特征选择方法。不同于集成特征选择等现有的增强稳定性方法,该方法将特征的稳定性与相关性、冗余性一起作为特征评价准则,通过产生多个数据集来减少样本数据扰动,不断将新产生的选择结果迭代计算稳定性因子,并同时提高其在准则中的比重以使迭代收敛。最终将融合多次迭代信息的特征排序作为最终结果输出。实验表明,该方法能够在保持相当分类精度的基础上,能够较大幅度地提高选择结果的稳定性,达到兼顾分类精度与稳定性的目的。To improve the stability of feature selection and reduce the fluctuations caused by the variation of sample data, a filter-type feature selection method considering the stability index is proposed. Unlike the integrated feature selec- tion and other methods, the propose method takes feature' s stability, together with the relevance and redundancy, as the evaluation criteria for feature selection, reduces the fluctuations of sample, data by producing multiple data sets, continuously puts new selection results into the iterative calculation of stability, and increases the proportion of the stability factor until the iteration is converged. At last, the achieved feature sequence fusing multi-iteration in- formation is taken as the final result of feature selection. The experimental results show that the proposed method can improve the stability of feature selection obviously, and reach the satisfied classification accuracy meanwhile.

关 键 词:特征选择 相关性 冗余性 稳定性 高维数据 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象