检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《运筹学学报》2002年第2期79-84,共6页Operations Research Transactions
基 金:国家自然科学基金资助(批准号:69973001)
摘 要:图的划分问题曾引起图论界的广泛关注.在文献[4]中讨论了k-单圈划分.本文进一步研究基于k-单圈划分的优化问题,即在一个赋权图中求一个最小权可k-单圈划分的支撑子图,以及对一个不存在k-单圈划分支撑子图的图,如何添最少的边使得它有k-单圈划分的支撑子图.The problem of partitioning a graph has been long concered. In [4], k-unicyclic partition problem is discussed. More generally, we discuss the optimization of k-unicyclic partition in this paper. That is how to get a spanning subgraph which has a k-unicycle partition with minimum weight in a weighted graph, and how to add minimum edges to get a spanning supgraph with k-unicyclic partition in a graph, if the graph doesn't have a spanning subgraph with the partition.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28