图灵奖得主识别与预测研究——基于多文献计量指标和支持向量机  被引量:10

Study on the Identifiability and Predictability of Turing Award Winners Based on Multiple Bibliometric Indicators and Support Vector Machine

在线阅读下载全文

作  者:唐川[1] 唐卷[2] 房俊民[1] 刘春江[1] 

机构地区:[1]中国科学院成都文献情报中心,成都610041 [2]中国科学院成都计算机应用研究所,成都610041

出  处:《情报杂志》2015年第2期69-72,78,共5页Journal of Intelligence

摘  要:国内外学者开展了若干借助文献计量指标来识别和预测重要科技奖项得主的研究与实践,但已有研究大多局限于对少数几项文献计量指标进行简单的计量统计,对问题的揭示不够全面和深入。利用支持向量机对图灵奖得主和非图灵奖得主的多项文献计量指标进行了分析,在两种不同情境下借助支持向量机对样本数据进行分类学习并进行识别与预测,发现利用文献计量指标建立的支持向量机模型对图灵奖得主具有很好的识别能力,但预测能力一般。Researchers have explored the use of bibliometric indicators to identify and predict the winners of some prominent science a- wards. Previous work mainly employed some preliminary bibliometrics and statistics, lacking coverage of bibliometric indicators and depth of analysis. In order to investigate the identifiability and predictability of Turing Award wimaers, 20 bibliometric indicators about 33 Turing Award winners and 300 non-Turing Award winners were analyzed. A classification and prediction analysis was conducted with the biblio- metric indicators and data by support vector machine(SVM) in two different scenarios. The result indicated that a classification model could be developed based on bibilometric indicators to identify the Turing Award winners with a high precision. However, the prediction precision appeared medium.

关 键 词:图灵奖 文献计量指标 支持向量机 

分 类 号:G350[文化科学—情报学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象