检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《东北大学学报(自然科学版)》2015年第2期301-304,共4页Journal of Northeastern University(Natural Science)
基 金:辽宁省自然科学基金资助项目(201102070)
摘 要:考虑赋范线性空间的乘积空间,由因子空间中的锥生成乘积空间中的锥.全连续算子定义在乘积空间中锥与两个闭球相交得到的有界闭集上,并且值域在锥中.在由锥上一类非负正齐次凹泛函表示的混合型锥拉伸与压缩条件下,利用构造性方法将其转化为Schauder型问题,证明了几个全连续算子的不动点定理.通过例子说明这里所需要的凹泛函在常用的空间及其锥上是容易构造的.A product space of normed linear spaces is considered, and the cone in the product space is produced by the cones in its factor spaces. A completely continuous operator is in the product space defined on the bounded closed set which is the intersection of the cone with two closed balls, and the range is in the cone. Under the mixed cone expansion and compression conditions that are expressed through a class of nonnegative, positively homogeneous, concave functionals on the cone, some fixed point theorems about the completely continuous operator are proved by constructing methods and converting them into the problems of Schauder type. It is illustrated by example that the concave functionals needed here are easily constructed in a common space and on a cone in it.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.164.48