神经网络法预测煤灰中铁钙比与灰熔融温度的关系  被引量:2

Predicting the relationship between iron/calcium ratio and ash fusion temperature using neural network method

在线阅读下载全文

作  者:熊金钰[1] 李寒旭[1] 曹祥[1] 杨忠连[1] 

机构地区:[1]安徽理工大学化学工程学院,安徽淮南232001

出  处:《应用化工》2015年第2期209-213,共5页Applied Chemical Industry

基  金:国家自然科学基金项目(21176003)

摘  要:向铁钙比不同的ZX煤、SH煤、LY煤中添加Ca、Fe助剂,改变煤灰中Fe2O3/Ca O,测定煤灰在弱还原气氛下的灰熔融温度,采用BP神经网络模型预测灰熔融温度与灰成分及其组合参数之间的关系。结果表明,3种煤中加入Fe S2、Fe、Ca CO3后,灰熔融温度均降低。当添加同种含Fe助剂,在中铁高钙的煤中,铁钙比越小,煤灰流动温度越低;而在低铁低钙的煤中,铁钙比越大,煤灰流动温度越低。同一煤样,加入不同含Fe助剂,相同铁钙比时,加入单质Fe的煤灰熔融温度更低。铁钙比对煤灰熔融温度的影响还与灰成分等其它因素有关。使用质量百分数作为基准,输入层包含8个灰成分参数和3个组合参数(铁钙比、铁钙和及酸碱比)的BP神经网络模型对灰熔融温度的预测优于仅包含8个灰成分和酸碱比的9参数输入层预测模型,该模型对高铁低钙的煤样灰熔融温度的预测效果较好。The three kinds of coals(ZX coal,SH coal and LY coal) with different iron/calcium ratio were added with Ca-containing or Fe-containing additive to change the iron/calcium ratio in coal ash. The fusion temperature of ash with additive was measured and the neural network was used to predict the relationship between the coal ash fusion temperature and its chemical composition as well as combined parameters. The results show that three kinds of coal ash fusion temperature can be decreased by addition of Fe S2,Fe and Ca CO3. When the same Fe-containing additive is added into coal,the smaller the iron/calcium ratio,the lower the ash flow temperature of coal with medium iron content and high calcium content;the greater the iron/calcium ratio,the lower the ash flow temperature of coal with low iron content and low calcium content. When the same coal is added with different Fe-containing additive,the ash fusion temperature of coal with addition of Fe is lower than with addition of Fe S2 at the same iron/calcium ratio. The effect of iron/calcium ratio on the ash fusion temperature is relevant to ash composition and other factors.The neural network can obtain a better performance when the input layer is consisted of 8 chemical composition parameters and 3 combined parameters(iron/calcium ratio,sum of iron and calcium,acid/base ratio) based on mass fraction and it can be a useful tool to predict the ash fusion temperature of coal with high iron content and low calcium content.

关 键 词:灰熔融温度 铁钙比 神经网络 

分 类 号:TQ54[化学工程—煤化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象