电厂热工过程参数辨识  被引量:2

Parameter Identification of Power Plant Thermal Process

在线阅读下载全文

作  者:何雅琴[1] 

机构地区:[1]常州机电职业技术学院,江苏常州213164

出  处:《计算机仿真》2015年第2期127-130,260,共5页Computer Simulation

摘  要:研究了电厂热工过程参数辨识问题。针对传统的蚁群算法在热工过程参数辨识中运行迭代时间长,而且存在容易出现早熟现象而陷入局部最优解的缺陷,提出了用人工免疫蚁群算法对电厂热工过程进行参数辨识的方法。将人工免疫的思想引入到传统的蚁群算法中,将特征信息作为疫苗注射给"蚂蚁",使"蚂蚁"具有免疫能力,新算法模型克服了传统蚁群算法的缺点。用新算法对电厂热工过程参数辨识的仿真结果表明,新算法有效避免了算法出现停滞的现象,提高了算法全局搜索能力和辨识的准确度。The parameter identification of power plant thermal process is studied. The traditional ant colony algo- rithm is an algorithm of searching the global optimal solutions. This algorithm takes a long iterate time to run, easily encounters premature problem and traps into a local optimal solution. In order to reduce the search time, avoid trap- ping into a local optimal solution and increase its efficiency, the artificial immune system is introduced into the tradi- tional ant colony algorithm, and the system injects feature information as vaccine into ants and makes the ant have immunity. This method overcomes the shortcomings of traditional ant colony algorithm. The simulation for parameter identification of power plant thermal process shows that, new algorithm avoids the algorithm stagnation phenomenon, and improves the global search ability of the algorithm and the identification accuracy.

关 键 词:蚁群算法 全局最优解 人工免疫 疫苗 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象