检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京邮电大学信息与通信工程学院,北京100876
出 处:《无线电工程》2015年第3期25-29,共5页Radio Engineering
基 金:国家自然科学基金资助项目(60902046)
摘 要:为了改善认知无线电系统中频谱感知的检测概率和检测速度,提出了基于极限学习机的频谱感知方法。极限学习机仅需要配置隐层节点个数,参数选择相对较容易,在算法执行过程中可以产生最优的唯一解,且训练速度快。计算出样本信号的能量值和循环谱值,对模型进行训练,使之具有快速判决测试信号的最佳性能。通过仿真结果可以看出,其在检测性能上优于传统的频谱感知算法和支持向量机感知算法,并在训练速度上比支持向量机感知算法有大幅度的性能提升。To improve the detection accuracy rate and speed of cognitive radio spectrum sensing system,a spectrum sensing method based on Extreme Learning Machine( ELM) is proposed. The ELM only needs to configure the number of nodes in the hidden layer,the parameter selection is relatively easy,and during the implementation of this method,a unique optimal solution and fast training speed can be generated. The energy value and cyclic spectrum value of the sample signal are calculated. These values are used to train the proposed model to make it have optimal performance for fast judgment of test signal. The simulation results show that the proposed method has better performance compared with the traditional methods and SVM-based sensing method,and the training speed is improved significantly compared with SVM-based sensing method.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62