检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京科技大学土木与环境工程学院,北京100083
出 处:《矿业安全与环保》2015年第1期56-59,共4页Mining Safety & Environmental Protection
摘 要:为有效预防煤炭自燃引发的内因火灾造成重大损失,选取煤炭自燃发生的征兆为预测指标,通过统计分析事故案例,确定出煤炭自燃二级指标6个,三级指标40个。选用BP神经网络作为预测模型,其中数据的建立采用概率理论分析得到,并在Matlab的环境下研究影响预测模型性能的因素,确定最佳参数值,从实验中总结出该方法具有通用性、扩展性和高效性等优点。To effectively prevent coal spontaneous combustion from causing heavy losses,the occurrence symptoms of coal spontaneous combustion were selected as its prediction indicators before fire disaster,and through the statistical analysis of the accident cases,6 second-level indicators and 40 third-level indicators for coal spontaneous combustion were identified. BP neural network was selected as the prediction model,in which,the data establishment was realized by the probability theory analysis. In the Matlab- based environment,study was carried out on the factors affecting the prediction model performance,the optimal parameter values were determined,and the advantages of this method such as the generality,expansibility and high efficiency were summarized from the experiments.
分 类 号:TD752.2[矿业工程—矿井通风与安全] X936[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.14.52