检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]洛阳理工学院,河南洛阳471023
出 处:《煤矿机械》2015年第2期278-281,共4页Coal Mine Machinery
基 金:河南省科技厅软科学研究项目(122400450104)
摘 要:针对支持向量机在故障诊断中参数的选取问题,提出一种改进的粒子群优化算法,对支持向量机的惩罚因子与核参数进行优化。为了克服传统粒子群算法前期收敛快、后期易陷入局部最优的缺陷,提出一种惯性权重自适应调整的粒子群优化算法,建立基于粒子群和支持向量的通风机故障诊断模型,通过样本数据对模型进行训练与测试,实现了通风机故障的识别,结果表明该模型对通风机故障的诊断是可靠的。Aimed at the problem of parameters selection of support vector machine(SVM) in fault diagnosis,put forward an improved particle swarm optimization(PSO) algorithm to optimize the penalty factor of SVM and the kernel parameter. A particle swarm optimization algorithm with adaptive inertia weight adjustment was proposed in order to overcome the defects of converges fast in early stage and easy to fall into local optimum in later stage for traditional particle swarm algorithm. The fault diagnosis model of mine ventilator was established based on particle swarm and support vector machine. After training and testing through the sample data the model can identify the fault of mine ventilator accurately, the results show that the model of ventilator fault diagnosis is reliable.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43