柯西-施瓦兹不等式与不确定度关系  被引量:1

Cauchy-Schwartz Inequality and the Uncertainty Relation

在线阅读下载全文

作  者:曾彦飞[1] 胡融刚[1] 

机构地区:[1]贵阳学院化学与材料工程学院

出  处:《化学教育》2014年第20期48-50,共3页Chinese Journal of Chemical Education

摘  要:从自然界不同空间最基本的不等量关系出发,导出了著名的柯西-施瓦兹不等式。将其应用于微观世界量子系统,并考虑到希尔伯特空间状态物理量算符的线性厄米性质,进一步推演得到量子力学的基本规律——不确定度关系。讨论了不确定度关系的重大意义,它是微观粒子波粒二象性的客观反映,是保持原子乃至整个世界稳定的基础。The famous Cauchy-Schwarz inequality is deduced from the fundamental unequal relationship in different spaces in the nature.Considering the linear Hermitian property of the state physical operators on the Hilbert space,the uncertainty relation is derived by applying the inequality to the quantum system of microcosm.The significance of the uncertainty relation which is the objective report of the wave-particle duality of the microscopic particle and the basis for keeping the stability of atoms and even the whole world is discussed.

关 键 词:柯西-施瓦兹不等式 微观世界 希尔伯特空间 不确定度关系 

分 类 号:O6-041[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象