基于机载LiDAR点云滤波的矿区DEM构建方法  被引量:11

Method of deriving DEM in the mining area based on filtering of airborne Li DAR data

在线阅读下载全文

作  者:吴芳[1] 张宗贵[1] 郭兆成[1] 安志宏[1] 于坤[1] 李婷[1] 

机构地区:[1]中国国土资源航空物探遥感中心,北京100083

出  处:《国土资源遥感》2015年第1期62-67,共6页Remote Sensing for Land & Resources

基  金:中国地质调查局地质大调查项目"新型传感器矿山地质环境调查"(编号:1212011220083)资助

摘  要:机载Li DAR数据是进行矿山高植被覆盖区地面塌陷调查的有效工具。利用湖南某矿区的机载Li DAR点云数据,提出了一种基于区域分割的渐进三角网滤波构建DEM的方法。首先,对原始机载Li DAR点云数据进行重新组织,以提高邻域点计算效率;其次,结合高程差计算区域统计值,按照地形情况分割测区内的地面点和非地面点,利用地面点构建初始稀疏TIN模型;然后,通过计算其他点与TIN的距离,渐进加密三角网,提取地面点;最后,剔除孤立点,生成格网间距为1 m的DEM。研究结果表明:基于区域分割的渐进三角网滤波构建的DEM能够较为精细地表达地形信息,特别在高植被覆盖区域,能够提取出高精度的真实地表DEM,可更加准确地表达出矿区高植被覆盖区的地表塌陷位置和范围等信息。Airborne LiDAR data can be used to monitor ground collapse in the vegetation-covered area effectively. A progressive triangulation filtering DEM -construction method based on region segmentation is proposed in this paper. In this method, the raw point clouds are re-organized so as to improve the efficiency of points calculation;combined with the regional statistical value of elevation difference, the authors conducted segmentation of ground points and non-ground points according to survey area’ s terrain, and then used ground points to build the initial sparse TIN model. Following the calculation of the distance between other points and TIN, the authors obtained progressive encryption triangulation and extracted ground points. Finally the authors eliminated isolated points, thus generating a DEM. This method was applied to airborne LiDAR data obtained in Hunan Province. The experiment results show that the proposed method is promising. The DEM constructed by this method conveys more refined topographical information. Especially in the vegetation-covered area, the extraction of high-precision DEM can be achieved. Meanwhile, the location and range of ground collapse can be shown.

关 键 词:机载LIDAR DEM构建 区域分割 渐进不规则三角网 数据滤波 

分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象