基于CQPSO-LSSVM的网络入侵检测模型  被引量:19

Network intrusion detection based on cooperative quantum-behaved particle swarm algorithm and least square support vector machine

在线阅读下载全文

作  者:张拓[1] 王建平[2] 

机构地区:[1]淮北职业技术学院建筑工程系,安徽淮北235000 [2]合肥工业大学电气与自动化工程学院,合肥230009

出  处:《计算机工程与应用》2015年第2期113-116,155,共5页Computer Engineering and Applications

基  金:安徽省"十二五"科技攻关计划项目(No.11010402183)

摘  要:为了提高网络入侵检测率,提出一种协同量子粒子群算法和最小二乘支持向量机的网络入侵检测模型(CQPSO-LSSVM)。将网络特征子集编码成量子粒子位置,入侵检测正确率作为特征子集优劣的评价标准,采用协同量子粒子群算法找到最优特征子集,采用最小二乘支持向量机建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。结果表明,CQPSO-LSSVM获得了比其他入侵检测模型更高的检测效率和检测率。In order to improve the detection rate of network intrusion, a novel network intrusion detection model is proposed in this paper based on cooperative quantum-behaved particle swarm optimization algorithm and least square support vector machine. The feature subset is coded as the position of particle, and the detection rate is taken as evaluation criteria of the feature subset, and the cooperative quantum-behaved particle swarm optimization algorithm is used to find the optimal feature subset, the intrusion detection model is built based on the optimal feature subset by least square support vector machine, the simulation experiment is carried out on the KDD CUP 99 data. The results show that, compared with other models, the proposed algorithm has improved detection efficiency and the detection rate of the network intrusion.

关 键 词:协同量子粒子群算法 最小二乘支持向量机 特征选择 网络入侵检测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象