基于改进最近邻的协同过滤推荐算法  被引量:30

Collaborative filtering algorithm based on improved nearest neighbors

在线阅读下载全文

作  者:硕良勋[1] 柴变芳[2] 张新东 

机构地区:[1]石家庄经济学院网络信息安全实验室,石家庄050031 [2]北京交通大学计算机与信息技术学院,北京100044 [3]河北新冀网络传媒有限公司,石家庄050031

出  处:《计算机工程与应用》2015年第5期137-141,共5页Computer Engineering and Applications

基  金:国家自然科学基金(No.61370129);河北省科技计划项目(No.13210702D)

摘  要:针对当前协同过滤推荐算法易受数据稀疏性与冷启动的问题,提出了一种改进最近邻的协同过滤推荐算法。建立用户-项目评分矩阵,并度量项目之间、用户之间的相似性,获取项目和用户的最近邻居,其中最近邻居的最优参数k值采用粒子群算法选择,在Movie Lens和Book-Crossing数据集上进行了仿真对比实验。结果表明,相对于其他协同过滤推荐算法,该算法降低了平均绝对误差值,提升了推荐准确度,达到提高推荐质量效果的目的。Aiming to the problems that the quality and precision are caused by the sparse user scorings and cold-start, a novel collaborative filtering algorithm based on improved nearest neighbors is proposed in this paper. User-item matrix is established, and similarity between items and users is measured, the nearest neighbor of items and users is acquired, in which the particle swarm optimization algorithm is used to select the optimal value of the parameter k, the simulation experiments are carried out on Movie Lens and Book-Crossing dataset. The results show that the proposed algorithm can achieve lower MAE and efficiently improve recommendation precision, and it can enhance the quality of recommendations.

关 键 词:协同过滤 改进最近邻 粒子群优化算法 参数选择 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象