检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2015年第5期251-254,265,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.61178017);中南大学实验室建设与开放基金(No.201114)
摘 要:为提高实验教学中实验报告成绩的录入效率,设计了一个基于图像处理技术的手写字符识别系统。以VISUAL C++6.0为编译环境,MFC为图形界面开发平台,通过CCD摄像头进行图像采集,根据图像识别原理对图片进行预处理,并分别采用BP神经网络和模板匹配两种不同方法对实验报告成绩及学号字符进行识别,比较了两种方法在识别准确率和速度方面的优劣。测试结果表明,BP神经网络法比模板匹配法识别的准确率更高,而后者识别速度较后者快10倍左右,自动打分系统较传统的手工录入法大幅度提高了数据输入速度。该系统可以应用于各类实验报告成绩的快速录入。In order to improve the input efficiency of the experiment report grades in experiment teaching, this paper designs a handwritten character recognition system based on image processing technology, which is able to identify and save student id with VISUAL C ++ 6.0 being the compiler environment, MFC as graphics interface development platform, CCD camera for image acquisition, and preprocessing of image based on image recognition theory. This paper also tests both methods of BP neural network and template matching to identify report grades and student's id and compares the pros and cons of their recognition accuracy and speed. The results show that template matching methods have a lower accuracy rate than BP neural network methods, but are almost 10 times faster, and both of them improve the data input speed greatly compared with the traditional method of manual entry. This system can be applied to quick entry of various types of experimental report grades.
关 键 词:图像处理 模板匹配 反向传播(BP)神经网络 手写字符识别
分 类 号:TP31[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.159.125