检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周达标 霍丽君[1,2] 李刚[1] 王德江[1] 贾平[1]
机构地区:[1]中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室,长春130033 [2]中国科学院大学,北京100049
出 处:《光子学报》2015年第2期68-73,共6页Acta Photonica Sinica
基 金:国家自然科学基金(No.61308099);吉林省重大科技攻关专项(No.11ZDGG001)资助
摘 要:为快速、准确地识别图像中的目标,提出一种结合图像熵和加速鲁棒特征算法的目标自动识别方法.首先,分块计算图像的信息熵,根据阈值筛选出纹理丰富区域.然后,结合Hessian矩阵和Harris算法提取纹理丰富区域的局部特征点.接着,计算特征向量并用主成分分析降低向量维数.最后,采用双向最近距离比例匹配算法进行分类,并用随机抽样一致算法剔除误匹配点.实验结果表明:对仿真数据库中带有视角、光照和尺度变化的图像,识别率分别为87.12%、75.31%和84.98%,平均识别时间分别为70.35ms、71.27ms、220.63ms;对含8956×6708像素的航空大面阵图像,正确匹配率为78.13%,识别时间为68.09s.本方法识别率和时间性能均优于加速鲁棒特征算法.In order to recognize targets in images fast and truly,an automatic target recognition method was proposed based on image entropy and speed up robust feature.First,image entropy was computed in different blocks,and regions full of texture were filtered out by threshold.The local key points in regions of interest were extracted by incorporating the Hessian and Harris detectors.Then,feature descriptors were established and principle component analysis was employed to reduce the dimensionality.Finally,nearest neighbor distance ratio classifier was explored in double directions and wrong matches were eliminated by random sample consensus.The experiment results demonstrate that the recognition rates for images in simulation database with varied view-points,scales and illuminations are 87.12%,75.31%and 84.98%,and the computing time is 70.35 ms,71.27 ms and 220.63 ms,respectively.Moreover,the correct matching rate for an aerial large planar array image of 8 956×6 708 pixels is 78.13% and the computing time is 68.09 s.Compared with speed up robust feature,the proposed method performs better both in recognition rates and computing time.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171