相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径  被引量:2

An integral-transformation corresponding to quantum mechanical fundamental commutative relation and its application in deriving Wigner function

在线阅读下载全文

作  者:范洪义[1] 梁祖峰[2] 

机构地区:[1]宁波大学,物理系,宁波315211 [2]杭州师范大学,理学院,杭州310036

出  处:《物理学报》2015年第5期57-62,共6页Acta Physica Sinica

基  金:国家自然科学基金(批准号:11175113;11275123)资助的课题~~

摘  要:本文指出相空间中存在有对应量子力学基本对易关系积分变换,其积分核是1/π::exp[±2i(q-Q)×(p-P)]::,其中::::表示Weyl排序,Q,P是坐标算符和动量算符,其功能是负责算符的三种常用排序(P-Q排序、Q-P排序和Weyl排序)规则之间的相互转化.此外,还导出了此积分核与Wigner算符之间的关系,以及Wigner函数在这类积分变换下的性质及用途.In this paper, it can be found that there is a type of integra-transformation which corresponds to a quantum mechanical fundamental commutative relation, with its integral kernel being 1π ::exp[±2i (q-Q) (p-P )]::, here ::::denotes Weyl ordering, and Q and P are the coordinate and the momentum operator, respectively. Such a transformation is responsible for the mutual-converting among three ordering rules(P-Q ordering, Q-P ordering and Weyl ordering). We also deduce the relationship between this kernel and the Wigner operator, and in this way a new approach for deriving Wigner function in quantum states is obtained. In this paper, it can be found that there is a type of integra-transformation which corresponds to a quantum mechanical fundamental commutative relation, with its integral kernel being 1π ::exp[±2i (q-Q) (p-P )]::, here ::::denotes Weyl ordering, and Q and P are the coordinate and the momentum operator, respectively. Such a transformation is responsible for the mutual-converting among three ordering rules(P-Q ordering, Q-P ordering and Weyl ordering). We also deduce the relationship between this kernel and the Wigner operator, and in this way a new approach for deriving Wigner function in quantum states is obtained.

关 键 词:对易关系 积分变换 Weyl编序 WIGNER函数 

分 类 号:O413.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象