检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁波大学,物理系,宁波315211 [2]杭州师范大学,理学院,杭州310036
出 处:《物理学报》2015年第5期57-62,共6页Acta Physica Sinica
基 金:国家自然科学基金(批准号:11175113;11275123)资助的课题~~
摘 要:本文指出相空间中存在有对应量子力学基本对易关系积分变换,其积分核是1/π::exp[±2i(q-Q)×(p-P)]::,其中::::表示Weyl排序,Q,P是坐标算符和动量算符,其功能是负责算符的三种常用排序(P-Q排序、Q-P排序和Weyl排序)规则之间的相互转化.此外,还导出了此积分核与Wigner算符之间的关系,以及Wigner函数在这类积分变换下的性质及用途.In this paper, it can be found that there is a type of integra-transformation which corresponds to a quantum mechanical fundamental commutative relation, with its integral kernel being 1π ::exp[±2i (q-Q) (p-P )]::, here ::::denotes Weyl ordering, and Q and P are the coordinate and the momentum operator, respectively. Such a transformation is responsible for the mutual-converting among three ordering rules(P-Q ordering, Q-P ordering and Weyl ordering). We also deduce the relationship between this kernel and the Wigner operator, and in this way a new approach for deriving Wigner function in quantum states is obtained. In this paper, it can be found that there is a type of integra-transformation which corresponds to a quantum mechanical fundamental commutative relation, with its integral kernel being 1π ::exp[±2i (q-Q) (p-P )]::, here ::::denotes Weyl ordering, and Q and P are the coordinate and the momentum operator, respectively. Such a transformation is responsible for the mutual-converting among three ordering rules(P-Q ordering, Q-P ordering and Weyl ordering). We also deduce the relationship between this kernel and the Wigner operator, and in this way a new approach for deriving Wigner function in quantum states is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3