检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任建强[1,2] 陈阳舟[1] 辛乐[1] 石建军[1]
机构地区:[1]北京工业大学城市交通学院,北京100124 [2]廊坊师范学院计算机系,河北廊坊065000
出 处:《交通运输系统工程与信息》2015年第1期62-68,共7页Journal of Transportation Systems Engineering and Information Technology
基 金:国家自然科学基金(61273006);国家高技术研究发展计划('863'计划)项目(2011AA110301);河北省科技支撑计划项目(13210807)
摘 要:基于视频的交通流检测在智能交通系统中具有重要意义.本文针对广泛采用的低位摄像机,提出了一种交通流特性参数的检测分析方法.首先基于三级虚拟检测线和自适应更新率局部背景建模来快速提取车辆特征点并消除活动阴影对提取精度的影响;然后基于Adaboost(Adaptive Boosting,自适应增强)分类器实现特征点按车分组,并在跟踪过程中根据运动特征相关度消除分组误差,获取高精度的车辆轨迹;进而自动生成多车道轨迹时空图并提取各车道交通流的多种特性参数.实验结果验证了算法的高效性;同时,自动生成的多车道轨迹时空图也为更多的交通信息获取和更深入的交通流特性分析提供了有力支持.Video Based detection of traffic flow has great significance in intelligent transportation systems.For the low angle cameras, a novel traffic flow multi-parameters detection method is proposed in this paper.Three virtual detecting lines and a local background modeling with adaptive learning rate are used to quickly extract vehicle feature points and eliminate the influence of activity shadow. Based on a trained Adaboost(Adaptive Boosting) classifier, the feature points are grouped to vehicles. Then the grouping errors are eliminated based on the motion-similarity of feature points in tracking process and the vehicle trajectories are extracted accurately. After that, the multi-lanes time-space diagrams are generated and the multi-parameters of traffic flow are detected automatically. Experimental results prove the efficiency of the method. In addition, the multi-lanes time-space diagrams can provide strong support for more traffic information acquisition and more in-depth analysis of traffic flow characteristics.
关 键 词:智能交通 交通流特性参数检测 时空轨迹跟踪 低位摄像机
分 类 号:U495[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.32.150