检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜海顺[1] 张旭东[1] 金勇[1] 侯彦东[1]
机构地区:[1]河南大学图像处理与模式识别研究所,河南开封475004
出 处:《电子学报》2014年第12期2386-2393,共8页Acta Electronica Sinica
基 金:国家自然科学基金(No.61305042;No.61374134;No.61304132);河南省科技发展计划项目(No.132300410474);河南省教育厅科学技术研究重点项目(No.12A520008)
摘 要:针对含光照、表情、姿态、遮挡等误差或被噪声污染的人脸图像的识别问题,本文提出一种基于Gabor低秩恢复稀疏表示分类的人脸图像识别方法.该方法首先用低秩矩阵恢复算法求得训练样本图像对应的误差图像;然后,对每一个训练样本图像及其对应的误差图像进行Gabor变换,得到相应的Gabor特征向量,并将这些Gabor特征向量组成一个Gabor特征字典;进而,计算测试样本图像Gabor特征向量在该Gabor特征字典下的稀疏表示系数,并用该稀疏表示系数和Gabor特征字典,对测试样本图像的Gabor特征向量进行类关联重构,同时计算相应的类关联重构误差.最后,根据测试样本图像Gabor特征向量的类关联重构误差,实现对测试样本图像的分类识别.在CMU PIE、Extended Yale B和AR数据库上的实验结果表明,本文提出的人脸图像识别方法具有较高的识别率和较强的抗干扰能力.To recognize the face images containing errors of illumination,expression,pose,occlusion,or contaminated by noise,we propose a face image recognition method via Gabor low-rank recovery sparse representation-based classification .In this method,we firstly obtain the error images of the training images using the low-rank matrix recovery algorithm,and then calculate the Gabor feature vectors of the training images and the corresponding error images via the Gabor transform algorithm .With these Gabor feature vectors,we constitute a Gabor feature dictionary .Based on the Gabor feature dictionary,we calculate the sparse representa-tion coefficients of Gabor feature vector of the given test image .For each class,we use the sparse representation coefficients associ-ated with the class and the Gabor feature dictionary to reconstruct the Gabor feature vector of the given test image .And then we cal-culate the reconstruction error between the Gabor feature vector and its approximation associated with the class .Based on the recon-struction errors associated with different class,we can accurately classify the given test image .Experimental results on CMU PIE, Extend Yale B and AR databases show that the proposed face image recognition method has a higher recognition rate and greater noise immunity .
关 键 词:人脸图像识别 稀疏表示 低秩矩阵恢复 GABOR变换
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49