针对摄像机矩阵估计的增强连续禁忌搜索方法  

A Resection Method Based on Enhanced Continuous Taboo Search

在线阅读下载全文

作  者:周果清[1] 王庆[1] 

机构地区:[1]西北工业大学计算机学院,陕西西安710072

出  处:《电子学报》2014年第12期2422-2428,共7页Acta Electronica Sinica

基  金:国家自然科学基金(No.61272287);教育部博士点基金(No.20116102110031);航空科学基金(No.2011ZC53036);西北工业大学基础研究基金(No.JC20120240)

摘  要:摄像机矩阵估计是机器视觉的一个重要问题.在2范数误差代价函数模型下,最小二乘法简单而有效,但因误差代价函数非凸,容易陷入局部最优.在无穷范数误差代价函数模型下,凸优化方法理论上可以获得全局最优,但计算效率较低,其计算耗时随着问题规模的增大而急剧增加.现代优化论中的增强连续禁忌搜索(Enhanced continuous taboo search,ECTS)方法具有逃离局部最优的优良性质,因此本文在2范数误差代价函数模型下提出一种针对摄像机矩阵估计的ECTS算法.在ECTS置信区间序列构造及最大置信区间选择环节,本文提出了一种非迭代的方法获取包含全局最优解的凸包.在增强禁忌搜索环节,本文提出了一种基于伪凸函数的候选解邻域构造方法.同时,给出了本文算法以概率1收敛于全局最优的理论证明.对虚拟场景和真实场景的实验结果表明本文算法可以快速获取摄像机矩阵估计的全局最优解.Resection is one of important issues in machine vision.Although L2 norm based least square method is reasonably fast,the globally optimal solution cannot be obtained theoretically due to its non-convexity of the objective function .Optimization using the L∞norm has been becoming an effective way to solve parameter estimation problems in multiview geometry .But the computational cost increases rapidly with the size of measurement data .In the paper,we propose a novel approach under the frame-work of enhanced continuous taboo search (ECTS)for resection in multiview geometry .ECTS is an optimization method in the do-main of artificial intelligence,which has an interesting ability of covering a wide solution space by promoting the search far away from current solution and consecutively decreasing the possibility of trapping in the local minima .We propose the corresponding ways in the key steps of ECTS,diversification and intensification .We also present theoretical proof to guarantee the global conver-gence of search with probability one .Experimental results validate that the ECTS can obtain the global optimum effectively and effi-ciently .Potentially,the novel ECTS framework can be employed in many applications of multi-view geometry .

关 键 词:多视几何 摄像机矩阵 全局最优 禁忌搜索 

分 类 号:TP319.7[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象