检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kamal Bahmanpour Reza Naghipour Monireh Sedghi
机构地区:[1]Faculty of Mathematical Sciences, Department of Mathematics University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran [2]School of Mathematics, Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746, Tehran, Iran [3]Department of Mathematics, University of Tabriz, Tabriz, Iran [4]Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
出 处:《Algebra Colloquium》2014年第4期605-614,共10页代数集刊(英文版)
摘 要:Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, m). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t≥ 0 is an integer and p C Supp H^t_p (M), then Hm^t+dim R/p (M) is not p-cofinite. Then we obtain a partial answer to a question raised by Huneke. Namely, if R is a complete local ring, then H^n_m (M) is finitely generated if and only if 0 ≤ n ¢ W, where W ---- {t + dimR/p丨p ∈ SuppH^t_p(M)/V(m)}. Also, we show that if J C I are 1-dimensional ideals of R, then H^t_I(M) is J-cominimax, and H^t_I(M) is finitely generated (resp., minimax) if and only if H}R, (Mp) is finitely generated for all p C Spec R (resp., p ∈ SpecR/MaxR). Moreover, the concept of the J-cofiniteness dimension cJ(M) of M relative to I is introduced, and we explore an interrelation between c^I_m(M) and the filter depth of M in I. Finally, we show that if R is complete and dim M/IM ≠ 0, then c^I_m (R) ---- inf{depth Mp + dim R/p 丨 P ∈ Supp M/IM/V(m)}.Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, m). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t≥ 0 is an integer and p C Supp H^t_p (M), then Hm^t+dim R/p (M) is not p-cofinite. Then we obtain a partial answer to a question raised by Huneke. Namely, if R is a complete local ring, then H^n_m (M) is finitely generated if and only if 0 ≤ n ¢ W, where W ---- {t + dimR/p丨p ∈ SuppH^t_p(M)/V(m)}. Also, we show that if J C I are 1-dimensional ideals of R, then H^t_I(M) is J-cominimax, and H^t_I(M) is finitely generated (resp., minimax) if and only if H}R, (Mp) is finitely generated for all p C Spec R (resp., p ∈ SpecR/MaxR). Moreover, the concept of the J-cofiniteness dimension cJ(M) of M relative to I is introduced, and we explore an interrelation between c^I_m(M) and the filter depth of M in I. Finally, we show that if R is complete and dim M/IM ≠ 0, then c^I_m (R) ---- inf{depth Mp + dim R/p 丨 P ∈ Supp M/IM/V(m)}.
关 键 词:cofinite modules cohomological finiteness dimension cominimax modules local cohomology minimax modules
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222