检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:司小胜[1] 胡昌华[1] 张琪[1] 何华锋[1] 周涛[1]
机构地区:[1]第二炮兵工程大学控制工程系302教研室,陕西西安710025
出 处:《电子学报》2015年第1期30-35,共6页Acta Electronica Sinica
基 金:国家自然科学基金(No.61174030;No.61104223;No.61025014;No.61374126)
摘 要:剩余寿命估计是工程系统预测与健康管理的关键.目前,基于观测的系统退化数据进行剩余寿命估计得到了很大的关注.由于系统随机退化过程和测量误差的影响,测量数据中不可避免包含退化随机性和测量不确定性.然而,现有基于观测数据的剩余寿命估计研究中,没有将退化随机性和测量不确定性对估计的剩余寿命分布的影响同时考虑.鉴于此,提出了一种基于Wiener过程且同时考虑随机退化和不确定测量的退化建模方法,利用Kalman滤波技术,实现了潜在退化状态的实时估计.在退化状态估计的基础上,得到了同时考虑退化状态不确定性和测量不确定性的解析剩余寿命分布.此外,提出了一种基于极大似然方法的退化模型参数估计方法.最后,通过陀螺仪的退化测量数据验证了本文提出的方法优于不考虑测量不确定性的方法,可以提高剩余寿命估计的准确性.Remaining useful lifetime( RUL) estimation is a key issue in prognosis and health management for industrial systems. Currently,the use of the observed degradation data of a system holds promise to estimate its RUL. Due to the effect of system 's stochastic deterioration and uncertain measurements,the measured data are inevitably contaminated by the stochasticity of the degradation and measurement uncertainty. How ever,in current studies of the RUL estimation based on the measured data,there is no report considering the effect of the degradation stochasticity and measurement uncertainty on the estimated RUL distribution. In this paper,a new degradation modeling approach is proposed based on Wiener process,w hich considers system 's stochastic deterioration and uncertain measurements simultaneously,and the Kalman filtering technique is utilized to estimate the underlying degradation state. On the basis of the estimated degradation state,the analytical RUL distribution is derived w hich accounts for the uncertainties in the estimated degradation state and measurements. Additionally,a parameter estimation method for the developed model is presented based on the maximum likelihood method. Finally,a case study for gyros verifies the proposed method and the results indicate that the proposed method is superior to the method w ithout considering uncertain measurements and can improve the accuracy of the estimated RUL.
关 键 词:剩余寿命估计 退化模型 不确定测量 KALMAN滤波
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.95.6