基于小波包分解和近似熵的脑电信号分类  被引量:1

Classification of EEG signals based on wavelet packet decomposition and approximate entropy

在线阅读下载全文

作  者:张玉婷[1] 张永[1] 

机构地区:[1]辽宁师范大学计算机与信息技术学院,辽宁大连116081

出  处:《济南大学学报(自然科学版)》2015年第4期286-291,共6页Journal of University of Jinan(Science and Technology)

基  金:中国博士后科学基金(20110491530);辽宁省教育厅基金(L2011186)

摘  要:为提高脑电信号分类准确率,提出基于小波包分解和近似熵相结合的特征提取方法。该方法利用小波包对信号的低频和高频进行分解,用近似熵对得到的叶子结点进行计算得到特征值,然后将其输入支持向量机进行分类。实验结果表明,该方法在两种思维结合识别中正确率最高达到了97.37%,取得了较好的分类效果。In order to improve the classification accuracy of EEG signals,we propose a feature extraction method based on wavelet packet decomposition and approximate entropy. The proposed method uses wavelet packet to decompose the low and high frequency of EEG signals,and uses approximate entropy to compute the feature values for the obtained leaf nodes. Obtained feature values are used as the inputs of support vector machine to classify. Experimental results show that the proposed method achieves classification accuracy over 97. 37% in the case of the combination of two mental tasks,which obtains a good classification accuracy.

关 键 词:脑电信号 小波包分解 近似熵 支持向量机 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象