检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《沈阳师范大学学报(自然科学版)》2015年第1期43-46,共4页Journal of Shenyang Normal University:Natural Science Edition
基 金:国家自然科学基金资助项目(11271178)
摘 要:法国数学家Rabia Nessah于2011年提出了一个Nash均衡存在性定理。该定理证明了对于一个有界的、紧的并且拟凹的广义弱转移连续博弈,一定存在一个Nash均衡。为了提高Nessah的定理的普遍适用性,减弱定理的条件,通过构造一个衡量拟凹程度大小标准的函数,引入了一个新的弱转移连续函数的概念,减弱了Nessah的定理对支付函数拟凹性的设定,并在此基础上得到了一个在非拟凹条件下,判断Nash均衡是否存在的新的定理,结果一般化了Nessah的定理。为寻找Nash均衡增加了新的理论基础和新的方向。In 2011, the French mathematician Rabia Nessah proposed a Nash equilibrium existence theorem. Thetheorem has proved that a bounded, compact quasiconcave and generalized weak transfer continuous game has a Nashequilibrium certainly. In order to improve universal applicability of the Nessah's theorem and reduce the theorem'sconditions, the author introduces a new concept called as a-weakly transfer continuous to reduce the assumption ofquasicancavity of payoff functions in Nessah's theorem by constructing a new function of measuring the degree ofquasiconcavity. On this basis the author obtains a new theorem of the existence of Nash equilibrium under the condition ofnonquasiconcavity. The result generalizes Nessah's theorem mentioned above. It adds a new theoretical basis anddirection for looking for Nash equilibrium.
关 键 词:NASH均衡 广义弱转移连续 α弱转移连续 拟凹性
分 类 号:O225[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.171.249