检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]泰州学院,江苏泰州225300 [2]江苏科技大学经济管理学院,江苏镇江212003
出 处:《计算机应用与软件》2015年第3期188-191,共4页Computer Applications and Software
基 金:教育部人文社会科学研究项目(10YJAZH069);江苏省第九批"六大人才高峰"高层次人才项目(XXRJ-013)
摘 要:朴素贝叶斯由于条件独立性假设使其分类效果不明显,同时在处理海量数据时缺乏灵活性。针对以上情况,提出一种基于动态约简的增量贝叶斯分类算法。算法首先利用(F-λ)广义动态约简计算出数据集的核属性,然后根据训练集的先验信息构造分类器对测试实例进行分类,最后利用类置信度进行选择性增量学习,增强处理增量数据的能力。实验结果表明,该算法在处理属性少的小量数据时,分类效果有一定的改善,在处理多属性大量数据时,分类效果明显提高。The classification effect of nave Bayesian is not obvious because of conditional independence assumption,so does its lack of flexibility in dealing with massive data. In view of the above,we propose a dynamic reduction-based incremental nave Bayesian classification algorithm. This algorithm uses( F-λ) generalised dynamic reduction to calculate the core attributes of dataset first,and then constructs classifier according to priori information of training sets to classify the test cases. Finally, it uses class confidence to conduct selective incrementallearning for enhancing the capability of incremental data processing. Experimental results show that the algorithm ameliorates the classification effect to a certain extent when dealing with few attributes and small amount of data,and when dealing with more attributes and large amount of data,the classification effect is obviously improved as well.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.112.17