基于基追踪去噪的水声正交频分复用稀疏信道估计  被引量:23

Sparse channel estimation of underwater acoustic orthogonal frequency division multiplexing based on basis pursuit denoising

在线阅读下载全文

作  者:尹艳玲[1,2] 乔钢[1,2] 刘凇佐[1,2] 周锋[1,2] 

机构地区:[1]哈尔滨工程大学,水声技术重点实验室,哈尔滨150001 [2]哈尔滨工程大学水声工程学院,哈尔滨150001

出  处:《物理学报》2015年第6期223-230,共8页Acta Physica Sinica

基  金:国家自然科学基金(批准号:11274079)和国家自然科学基金青年科学基金(批准号:11304056)资助的课题~~

摘  要:针对传统的l2-范数信道估计精度低的问题,提出了一种基于基追踪去噪(BPDN)的水声正交频分复用稀疏信道估计方法,该方法针对水声信道的稀疏特性,利用少量的观测值即可以很高的精度估计出信道冲激响应.与贪婪追踪类算法相比,基于BPDN算法的稀疏信号估计具有全局最优解,采用l2-l1范数准则估计信号,同时考虑了观测值含噪情况,通过调整正则化参数控制估计信号稀疏度和残余误差之间的平衡.仿真分析了导频分布、正则化参数等对BPDN算法的影响以及BPDN算法与最小平方(LS)、正交匹配追踪(OMP)信道估计算法的性能.湖试结果表明,在稀疏信道下,基于BPDN的信道估计方法明显优于LS和OMP信道估计方法.To solve the problem of poor performance of the traditional 12-norm channel estimation, a sparse channel estimation approach based on basis pursuit denoising (BPDN) is proposed in orthogonal frequency division multiplex underwater acoustic communication. Owing to the sparsity of the underwater acoustic channel, only a few observations are needed to recover the channel impulse response with a high accuracy. Compared with greedy pursuit algorithm, BPDN algorithm has the globally excellentest solution. The signal is estimated based on the 12-11 norm rule and the observations containing the noise are considered. The regnlarization parameter can be changed to balance the signal's sparsity against the residual error. The influences of the pilot distribution and the regularization parameter on the BPDN algorithm are discussed in the simulation. The BPDN channel estimator is compared with the least square (LS) and also with orthogonal matching pursuit (OMP). The data collected from lake experiment show that the BPDN channel estimator outperforms the LS and OMP channel estimator over spare underwater acoustic channel.

关 键 词:基追踪去噪 正交频分复用 稀疏信道估计 正交匹配追踪 

分 类 号:TN929.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象