检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青岛大学复杂性科学研究所,山东青岛266071
出 处:《青岛大学学报(工程技术版)》2015年第1期1-5,共5页Journal of Qingdao University(Engineering & Technology Edition)
基 金:国家自然科学基金资助项目(61174033);山东省自然科学基金资助项目(ZR2011FM006)
摘 要:为解决一类带有区间时变时滞的中立型系统的稳定性问题,本研究以LyapunovKrasovski稳定性理论为基础,构造了适当的Lyapunov-Krasovski泛函,在推导技术上结合Wirtinger型积分不等式和倒数凸组合方法,得到了新的基于线性矩阵不等式的时滞相关稳定性条件,并给出数值例子进行验证和分析。分析结果表明,定理1均能取得更大的时滞允许上界,且定理1的最大时滞上界值均大于文献[6,9-13]的结果,说明了定理1的有效性及优越性。该研究对时滞系统的稳定性具有十分重要的理论意义。It is important to study the stability issue for time-delay systems as time-delay is often the main cause of instability and poor performance of dynamic systems. This paper is concerned with the problem of delay-dependent stability for neutral systems with interval time-varying delays. Based on the Lyapunov- Krasovskii stability theory, a new type of augmented Lyapunov-Krasovskii functional is constructed and a new delay-dependent stability criterion is established in terms of linear matrix inequalities. The Wirtinger- based integral inequality and the reciprocally convex method are used to deal with the delay term. A nu- merical example is given to illustrate the improvement of the upper bounds of time-varying interval and the effectiveness of the present results.
关 键 词:中立型系统 线性矩阵不等式 Wirtinger型积分不等式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117