ARIMA模型在河南省AIDS疫情预测中的应用  被引量:4

Application of ARIMA models in forecasting epidemic trend of AIDS in Henan Province

在线阅读下载全文

作  者:万燕丽[1] 杨永利[1] 施念[2] 王曼[3] 王小丽[1] 王莹[1] 惠晓庆 毛赛彩 施学忠[1] 

机构地区:[1]郑州大学公共卫生学院卫生统计学教研室,郑州450001 [2]郑州大学临床医学系2010级,郑州450001 [3]郑州大学学报编辑部,郑州450001

出  处:《郑州大学学报(医学版)》2015年第2期160-163,共4页Journal of Zhengzhou University(Medical Sciences)

基  金:国家“十二·五”科技重大专项2012ZX10004905;河南省医学科技攻关计划项目201303003

摘  要:目的:探讨ARIMA模型在河南省AIDS疫情预测中的可行性。方法:收集河南省2005年至2013年AIDS发病率和病死率数据,分别建立ARIMA模型,通过模型拟合优度统计量筛选最优模型,采用平均误差率评估模型预测效果,并用所构建的模型预测2014年至2016年河南省AIDS疫情。结果:河南省AIDS发病率和病死率的最优ARIMA模型分别为ARIMA(0,1,1)和ARIMA(0,2,1);模型的拟合值均符合其实际流行趋势,平均误差率分别为0.16和0.25;预测2014年至2016年河南省AIDS发病率分别为3.40/10万、3.91/10万和4.50/10万,病死率分别为15.34%、8.82%和7.64%。结论:ARIMA模型很好地模拟了河南省AIDS疫情的演变趋势,可用于河南省AIDS发病率和病死率的预测。Aim: To explore the feasibility of autoregressive integrated moving average(ARIMA) model in forecasting epidemic trend of AIDS in Henan Province. Methods: ARIMA model was trained with the annual morbidity and fatality rate of AIDS from 2005 to 2013 in Henan Province, respectively. Moreover, the goodness-of-fit was used to determine relative optimal model, and the mean error rate(MER) was calculated to assess the accuracy of prediction models. Finally, the data of 2014 to 2016 were forecasted by the best-fitting ARIMA models. Results: ARIMA (0, 1, 1 ) model was the best model for morbidity of AIDS, while ARIMA (0, 2, 1 ) was the optimal models for fatality rate of AIDS. The fitting trend of prediction model was consistent with the observed data, and the MER of two optimum ARIMA models was 0.16 and 0.25 respectively. The forecasted value of the morbidity from 2014 to 2016 in Henan Province was 3.40, 3.91 and 4.50 per 100 000 populations and the predicated value of fatality rate was 15.34% , 8.82% and 7.64%. Conclusion : The ARIMA model fit epidemic trend of AIDS well and can be used in predication of AIDS morbidity and fatality rate of Henan Province.

关 键 词:获得性免疫缺陷综合征 ARIMA模型 预测 河南省 

分 类 号:R183.9[医药卫生—流行病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象