基于多维模式分析对说谎的脑网络特征识别  被引量:1

Brain-Network Feature Recognition of Deception Based on Multivariate Pattern Analysis

在线阅读下载全文

作  者:蒋伟雄[1,2] 刘华生[2] 廖坚[2] 李勇帆[1] 王维[2] 

机构地区:[1]湖南第一师范学院信息科学与工程系,长沙410205 [2]中南大学湘雅三医院放射科,长沙410013

出  处:《电子科技大学学报》2015年第2期311-315,共5页Journal of University of Electronic Science and Technology of China

基  金:教育部人文社科基金青年项目(13YJCZH068);湖南省教育厅科学研究项目青年项目(13B013);湖南省教育科学规划重点课题(XJK013AXX001)

摘  要:为了研究说谎时的脑网络特征,采集了32个被试在说真话和说谎条件下的功能磁共振数据,预处理后利用AAL模板构建不同条件下的功能连接网络,再利用基于机器学习的多维模式分类器对说谎和说真话进行分类。该分类器取得了良好的分类正确率82.03%(说谎84.38%,说真话79.69%),并提取了辨别说谎和说真话的有效的功能连接模式。结果表明了使用大尺度的功能连接对说谎和说真话进行分类的良好性能,并且从脑网络角度揭示了说谎的特征。Considerable functional MRI (fMRI) studies have shown differences of brain activity between lie-telling and truth-telling. However there are few studies aiming at brain network feature of lie-telling. In this study, we obtained fMRI data of 32 subjects while responding to questions in a truthful, inverse and deceitful manner, then constructed whole-brain functional connectivity networks for the lie-telling and truth-telling conditions based on a canonical template of 116 brain regions, and used a multivariate pattern analysis approach based on machine learning to classify the lie-telling from truth-telling. The results showed that the classifier achieved high classification accuracy (82.03%, 84.38%for lie-telling, 79.69%for truth-telling) and could extract informational functional connectivities that could be used to discriminate lie-telling from truth-telling. These informational functional connectivities were mainly located among networks. These results not only demonstrated good performance when classifying with functional connectivities, but also elucidated the neural mechanism of lie-telling from a functional integration viewpoint.

关 键 词:脑网络 说谎 功能磁共振 功能连接 多维模式识别 

分 类 号:R741.02[医药卫生—神经病学与精神病学] TP391.4[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象