检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:聂昌雄[1]
出 处:《数学年刊(A辑)》2015年第1期59-68,共10页Chinese Annals of Mathematics
基 金:国家留学基金(No.[2011]5025)的资助
摘 要:[Nie C X,Wu C X,Regular submanifolds in the conformal space Q_p^n,ChinAnn Math,2012,33B(5):695-714]中研究了共形空间Q_s^n中的正则子流形,并引入了共形空间Q_s^n中的子流形理论.本文作者将分类共形空间Q_s^n中的Blaschke拟全脐子流形,证明伪Riemann空间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形是共形空间中的Blaschke拟全脐子流形;反之,共形空间中的Blaschke拟全脐子流形共形等价于伪Riemann空间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形.这一结论可看作是共形空间Q_s^n中共形迷向子流形分类定理的推广.In[Nie C X,Wu C X,Regular submanifolds in the conformal space Q_p^n,Chin Ann Math,2012,33B(5):695-714],the authors studied the regular submanifolds in the conformal space Q_s^n and introduced the submanifold theory in the conformal space Q_s^n.This paper classifies the Blaschke quasi-umbilical submanifolds in the conformal space Q_s^n.It is proved that regular submanifolds in pseudo-Riemann space forms with constant scalar curvature and parallel mean curvature vector field are Blaschke quasi-umbilical submanifolds in the conformal space,and that any Blaschke quasi-umbilical submanifold in the conformal space is conformal equivalent to a regular submanifold with constant scalar curvature and parallel mean curvature vector field in pseudo-Riemann space forms.These results may be regarded as an extension of the classification of the conformal isotropic submanifolds in the conformal space Q_s^n.
关 键 词:正则子流形 共形不变量 Blaschke拟全脐子流形
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7