共形空间Q_s^n中的正则Blaschke拟全脐子流形  被引量:1

Regular Blaschke Quasi-umbilical Submanifolds in the Conformal Space Q_s^n

在线阅读下载全文

作  者:聂昌雄[1] 

机构地区:[1]湖北大学数学与统计学学院,武汉430062

出  处:《数学年刊(A辑)》2015年第1期59-68,共10页Chinese Annals of Mathematics

基  金:国家留学基金(No.[2011]5025)的资助

摘  要:[Nie C X,Wu C X,Regular submanifolds in the conformal space Q_p^n,ChinAnn Math,2012,33B(5):695-714]中研究了共形空间Q_s^n中的正则子流形,并引入了共形空间Q_s^n中的子流形理论.本文作者将分类共形空间Q_s^n中的Blaschke拟全脐子流形,证明伪Riemann空间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形是共形空间中的Blaschke拟全脐子流形;反之,共形空间中的Blaschke拟全脐子流形共形等价于伪Riemann空间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形.这一结论可看作是共形空间Q_s^n中共形迷向子流形分类定理的推广.In[Nie C X,Wu C X,Regular submanifolds in the conformal space Q_p^n,Chin Ann Math,2012,33B(5):695-714],the authors studied the regular submanifolds in the conformal space Q_s^n and introduced the submanifold theory in the conformal space Q_s^n.This paper classifies the Blaschke quasi-umbilical submanifolds in the conformal space Q_s^n.It is proved that regular submanifolds in pseudo-Riemann space forms with constant scalar curvature and parallel mean curvature vector field are Blaschke quasi-umbilical submanifolds in the conformal space,and that any Blaschke quasi-umbilical submanifold in the conformal space is conformal equivalent to a regular submanifold with constant scalar curvature and parallel mean curvature vector field in pseudo-Riemann space forms.These results may be regarded as an extension of the classification of the conformal isotropic submanifolds in the conformal space Q_s^n.

关 键 词:正则子流形 共形不变量 Blaschke拟全脐子流形 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象