检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京师范大学中文信息处理研究所,北京100875 [2]北京师范大学文学院,北京100875
出 处:《北京大学学报(自然科学版)》2015年第2期262-268,共7页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:863计划(2012AA011104)资助
摘 要:将文本分类技术引入唐诗研究。首先将唐诗按照题材分为爱情婚姻、边塞战争、交游送别、羁旅思乡、山水田园、咏史怀古和其他7类,并据此提出唐诗题材自动分类模型。所选500首诗歌样本以《唐诗三百首》为基础,并有所补充。采用向量空间模型(VSM)将唐诗文本转换为向量,通过卡方检验进行词语特征选择,最后基于朴素贝叶斯和支持向量机算法构造文本分类器,取得较好的题材分类效果。此外,还验证了作者关于题目、体制、作者等变量对题材分类产生影响的假设,为相关诗歌本体研究提供了科学依据。The authors propose a text classification model for Tang poetry. Firstly seven categories are defined for poetry themes: love and marriage, frontier war, friendship and farewell, journey and homesick, landscape and countryside, history and nostalgia, others. 500 Tang poems are selected as research samples, and they are represented in vectors with Vector Space Model (VSM). To reduce the vector dimensions, feature selection is made by Chi-square test. Two classifiers are built based on Naive Bayes and Support Vector Machine algorithms. The models perform well in classification experiment. Besides, the authors verify the positive effect of poetry titles, authors and types to poetry themes by text classification models, which could offer scientific reference to the related research of Tang poetry.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145