检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冷芳玲[1] 刘金鹏[1] 王志刚[1] 陈昌宁[1] 鲍玉斌[1] 于戈[1] 邓超[2]
机构地区:[1]东北大学信息科学与工程学院,沈阳110819 [2]中国移动通信研究院业务支撑研究所,北京100053
出 处:《计算机研究与发展》2015年第4期960-971,共12页Journal of Computer Research and Development
基 金:国家自然科学基金重点项目(61033007);国家自然科学基金项目(61173028;61272179);中央高校基本科研业务费专项基金项目(N100704001);教育部-中国移动科研基金项目(MCM20125021)
摘 要:近年来随着互联网的普及和相关技术的日益成熟,大规模图数据处理成为新的研究热点.由于传统的如Hadoop等通用云平台不适合迭代式地处理图数据,研究人员基于BSP模型提出了新的处理方案,如Pregel,Hama,Giraph等.然而,图处理算法需要按照图的拓扑结构频繁交换中间计算结果而导致巨大的通信开销,这严重地影响了基于BSP模型的系统的处理性能.首先从降低消息通信的角度分析当前主流BSP系统的处理方案,然后提出了一种基于边聚簇的垂直混合划分策略(EC-VHP),并建立代价收益模型分析其消息通信优化的效果.在EC-VHP的基础上,提出了一个点-边计算模型,并设计了简单Hash索引和多队列并行顺序索引机制,进一步提高消息通信的处理效率.最后,在真实数据集和模拟数据集上的大量实验,验证了EC-VHP策略和索引机制的正确性和有效性.With the development of Internet and the gradual maturity of related techniques in recent years ,the processing of large graphs has become a new hot research topic .Since it is not appropriate for traditional cloud computing platforms to process graph data iteratively , such as Hadoop , researchers have proposed some solutions based on the BSP model ,such as Pregel ,Hama and Giraph . However ,since graph algorithms need to frequently exchange intermediate results in accordance with the graph's topological structure , the tremendous communication overhead impacts the processing performance of systems based on the BSP model greatly .In this paper ,we first analyze the solutions proposed by the well‐known BSP‐based systems in reducing communication overhead , and then propose a graph partition strategy named edge cluster based vertically hybrid partitioning (EC‐VHP) , building a cost benefit model to study its effectiveness to the communication overhead .Then based on EC‐VHP ,we propose a vertex‐edge computation model ,and design both a plain hash index structure and a multi‐queue parallel sequential index structure to further improve the processing efficiency of message communication .Finally ,our experiments on real and synthetic data sets demonstrate the efficiency and accuracy of the EC‐V HP and the index mechanism .
关 键 词:大规模图 BS P模型 图划分 点-边计算模型 索引结构
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117