组态式牵引电动机故障诊断模型  被引量:1

Configurable Fault Diagnosis Model in Induction Motor

在线阅读下载全文

作  者:聂冰[1] 赵慧敏[1] 丁鸣艳[2] 李文[1] 

机构地区:[1]大连交通大学软件学院,辽宁大连116028 [2]大连交通大学电气信息学院,辽宁大连116028

出  处:《上海交通大学学报》2015年第3期402-405,共4页Journal of Shanghai Jiaotong University

基  金:国家高技术研究发展计划(863)项目(2012AA040912);辽宁省教育厅高等学校科研计划项目(L2011077;L2012159)资助

摘  要:针对电动机典型的故障诊断模型网络结构复杂、训练困难等问题,提出一种组态式牵引电动机故障诊断模型.该模型由多个多输入单输出的子径向基函数神经网络构成,每个子模型识别一种故障特征.根据系统需要将多个子模型任意组合,用来识别类型繁多的电动机故障.利用特征提取后的样本数据对该模型进行训练,并通过测试样本验证了故障诊断模型的有效性.结果表明,采用组态式牵引电动机故障诊断模型,一个子模型仅识别一种牵引电动机故障状态,结构简单,模型训练难度小,提高了模型的故障识别能力以及应用的灵活性,为牵引电动机故障诊断提供了一条新思路.Based on the research on typical fault diagnosis model, a configurable diagnosis model of induc- tion motor was proposed to resolve the problem of complexity of network and difficulty of training. This model contains multiple sub RBF neural networks which have multiple inputs and single output, and one type of fault can be recognized by a specific sub-model. The sub-models can be any combination based on the demands of the system, and various faults can be identified. The model is trained using the samples with feature extracted, and the effectiveness of fault diagnosis model is verified through test samples. It is shown that one sub-model can be used to recognize one specific state of motor in the configured fault diag- nosis model, the structure is simple, the difficulty of model training is reduced, the fault identification ca- pability of model and flexibility of application are improved, providing a new method for the induction mo- tor fault diagnosis.

关 键 词:牵引电动机 故障诊断模型 组态 径向基函数神经网络 构造 

分 类 号:TM307[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象