GA-BP神经网络模型在地区工业技术创新能力评价中的应用  被引量:7

Application of BP Neural Network and Genetic Algorithm on Technological Innovation Capability Evaluation of Regional Enterprises

在线阅读下载全文

作  者:张永礼[1] 武建章[1] 

机构地区:[1]石家庄经济学院,石家庄050031

出  处:《工业技术经济》2015年第4期98-104,共7页Journal of Industrial Technological Economics

基  金:国家自然科学基金资助项目(项目编号:71201110)

摘  要:针对当前技术创新能力评价方法大多建立在线性模型的基础上,且技术创新能力影响因素较多,可能存在多重共线性的缺陷,本文提出了遗传算法优化的BP神经网络模型。GA-BP神经网络模型在以下几方面做出了改进:①利用了神经网络强大的非线性关系映射能力,避免了传统线性模型的缺陷。②利用遗传算法对评价指标进行了降维,去除了多重共线性。③使用遗传算法从全局搜寻BP神经网络权值和阀值向量,优化了BP神经网络模型,避免了BP神经网络由于使用梯度下降算法,容易陷入局部最优解的缺陷。本文最后选取2008~2013年全国31个省市规模以上工业企业技术创新能力124条数据作为训练样本,31条数据作为测试样本,分别测试遗传算法优化的BP神经网络和未优化的BP神经网络,测试结果显示遗传算法优化的BP神经网络模型预测准确率高于未优化的BP神经网络模型。At present , most technological innovation ability evaluation methods are established on the basis of the linear model , and the factors that affect the technological innovation capability are many , the multicollinearity may exist among variables . According to the above two reasons , the GA-BP neural network model was proposed in this paper . Genetic algorithm (GA) optimized the BP neural net-work model in the following aspects: ①neural network has the strong ability of dealing with nonlinear system . It avoided the disadvantages of the linear model . ②In order to remove the multicollinearity , the genetic algorithm was used to reduce evaluation index dimension . ③BP neural network used gradient descent algorithm that modified weights and thresholds , and it was easy to fall into local optimal solution . Genetic algorithm was introduced to search the BP neural network weights and thresholds in global scope . Finally , the technical innovation data of industrial enterprises above designated size in the 31 provinces , and cities were selected from year 2008 to 2013 , 124 of them are regard as training samples , others as testing samples . Empirical conclusion shows that forecast accuracy of GA -BP neural network is higher than BP neural network .

关 键 词:遗传算法 BP神经网络 技术创新能力 

分 类 号:F224[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象