Characterization of dual enzyme resulted from bicistronic expression of two β-glucanases in porcine cells  

Characterization of dual enzyme resulted from bicistronic expression of two β-glucanases in porcine cells

在线阅读下载全文

作  者:ZHANG Xian-wei LI Zi-cong MENG Fan-ming WANG De-hua LIU De-wu HE Xiao-yan SUN Yue BAI Yin-shan WU Zhen-fang 

机构地区:[1]National Engineering Research Center for Breeding Swine Industry,South China Agricultural University [2]Wen's Research Institute,Guangdong Wen's Food Group Co.Ltd.

出  处:《Journal of Integrative Agriculture》2015年第4期732-740,共9页农业科学学报(英文版)

基  金:funded by a grant from the National Science and Technology Major Projects of China (2014ZX08006004);three grants from the Department of Science and Technology of Guangdong,China (20111090700016,2011A020102003 and 2011A020201009)

摘  要:Many animal feed grains contain high β-glucan in the cell wall. Pigs do not secret β-glucanase to degrade the β-glucan in their feed. The indigestible β-glucan not only blocks the release of nutrients from the grain cell wall, but also increases the digesta viscosity in the gastrointestinal tract of pigs. Therefore, dietary β-glucan significantly inhibits nutrient digestion and absorption in pigs. Transgenic expression of β-glucanase in the digestive tract of pigs may offer a solution to solve this problem. In the current study, four artificial codon-optimized β-glucanases genes was prepared and expressed in porcine cells. Only p Bg A and p Egx showed high activity in transfected pig kidney cells. To improve the p H range and p H stability of β-glucanase, the two β-glucanases, p Bg A and p Egx, were co-expressed in pig kidney cells and salivary gland cells by Linker A3 or 2A peptide. The resulting dual enzymes of p Bg A3 p Eg and p Bg2 Ap Eg showed significantly enlarged p H range and significantly increased p H stability, as compared to parental enzymes. These results provide useful data for future study on increasing the feed digestibility of pigs by transgenic expression of β-glucanase in their salivary glands.Many animal feed grains contain high β-glucan in the cell wall. Pigs do not secret β-glucanase to degrade the β-glucan in their feed. The indigestible β-glucan not only blocks the release of nutrients from the grain cell wall, but also increases the digesta viscosity in the gastrointestinal tract of pigs. Therefore, dietary β-glucan significantly inhibits nutrient digestion and absorption in pigs. Transgenic expression of β-glucanase in the digestive tract of pigs may offer a solution to solve this problem. In the current study, four artificial codon-optimized β-glucanases genes was prepared and expressed in porcine cells. Only p Bg A and p Egx showed high activity in transfected pig kidney cells. To improve the p H range and p H stability of β-glucanase, the two β-glucanases, p Bg A and p Egx, were co-expressed in pig kidney cells and salivary gland cells by Linker A3 or 2A peptide. The resulting dual enzymes of p Bg A3 p Eg and p Bg2 Ap Eg showed significantly enlarged p H range and significantly increased p H stability, as compared to parental enzymes. These results provide useful data for future study on increasing the feed digestibility of pigs by transgenic expression of β-glucanase in their salivary glands.

关 键 词:Β-GLUCANASE BICISTRONIC pig feed digestibility salivary gland cells TRANSGENIC 

分 类 号:S816[农业科学—饲料科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象