基于奇异值分解(SVD)差分谱降噪和本征模函数(IMF)能量谱的改进Hilbert-Huang方法  被引量:18

Improved HHT Method Based on SVD Difference Spectrum and IMF Energy Spectrum

在线阅读下载全文

作  者:柴凯[1] 张梅军[1] 黄杰[1] 唐俊刚 

机构地区:[1]解放军理工大学野战工程学院,南京210007

出  处:《科学技术与工程》2015年第9期90-96,共7页Science Technology and Engineering

基  金:国家自然科学基金项目(51175511)资助

摘  要:针对随机噪声和虚假IMF会导致改进HHT中EEMD分解质量下降和Hilbert谱混乱,提出了一种基于SVD差分谱降噪预处理和IMF能量谱剔除虚假分量的改进HHT。该方法首先对原始信号进行SVD降噪,通过基本不等式原理来确定相空间重组的最佳Hankel矩阵结构,利用奇异值差分谱来确定有效奇异值的阶次;然后对消噪的信号进行EEMD分解,通过IMF能量谱来去除虚假分量;最后对主IMF进行Hilbert谱分析。仿真和实验结果表明,SVD能提高信噪比,抑制噪声对EEMD分解精度的干扰;能量谱能有效地消除虚假IMF对Hilbert谱分析的影响;Hilbert谱中各频率成分清晰,解决了随机噪声和虚假分量对传统改进HHT的不良影响。For the phenomenon of random noise and false intrinsic mode function( IMF) decline the quality of ensemble empirical mode decomposition( EEMD) and disrupt the Hilbert spectrum,on improved HHT method is presented based on singular value decomposition( SVD) difference spectrum to de-noise and IMF energy spectrum to remove the false IMFs.Firstly,the original signals are de-noised by SVD which the best Hankel matrix structure is determined by the basic principle of inequality and difference spectrum is used to determine the valid order of singular values.Secondly,de-noised signals are decomposed through EEMD and IMF energy spectrum is used to remove the false component.Finally,the main IMFs are analyzed by the Hilbert spectrum.Simulation and experimental results show that SVD can improve signal to noise ratio and depress the noise impact of the accuracy of EEMD,and Energy entropy spectrum can effectively remove the false IMF.The every frequency of Hilbert spectrum is clear and the problem that random noise and false component interfere improved HHT has been solved.

关 键 词:改进Hilbert-Huang变换 奇异值分解 差分谱 总体平均经验模态分解 固有模态函数 能量谱 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象