识别岩性油藏薄储集层的谱分解技术  被引量:7

Thin Lithologic Reservoir Identification with Spectral Decomposition Techniques

在线阅读下载全文

作  者:田仁飞[1,2] 杨春峰[3] 胡宇[3] 杨振峰[3] 李秋菊[3] 

机构地区:[1]中国石化河南油田分公司博士后工作站,河南郑州450016 [2]成都理工大学地球探测与信息技术教育部重点实验室,四川成都610059 [3]中国石化河南油田石油物探技术研究院,河南郑州450016

出  处:《天然气地球科学》2015年第2期360-366,共7页Natural Gas Geoscience

基  金:国家自然科学基金项目(编号:41304080;41274128);地球探测与信息技术教育部重点实验室开放基金联合资助

摘  要:准噶尔盆地车排子地区超覆在石炭系之上的古近系,聚集丰富的岩性油藏资源,由于受石炭系强振幅的影响和地震资料分辨率的制约,常规的地震属性无法有效刻画储层的纵横向分布。针对此问题,利用改进的广义S变换的谱分解技术对地震资料进行时频分析,结合已有钻井、测井资料精细标定层位、录井显示和测井解释等综合分析,优选出70Hz的分频剖面识别该地区的岩性油藏薄储集层。储层预测结果与现有钻井资料都非常吻合。据此研究成果又部署了一口评价井,并获得了工业油流,进一步表明谱分解技术适合该地区古近系的油气储层预测,也可为其他地区类似的岩性油藏储层预测提供思路。Lithologic reservoir resources are rich in Carboniferous near the top of the Paleogene Chepaizi ar- ea,Junggar Basin. But due to the impact of strong amplitude in Carboniferous and limited resolution of seis- mic data, the conventional seismic attributes cannot effectively portray the vertical and horizontal distribu- tion of the Ieservoirs. For this issue, spectral decomposition techniques are used to identify thin lithologic reservoirs in the study area. Improved general S transform spectral decomposition techniques are used to perform frequency division of seismic data. Combined with results of a comprehensive analysis,such as the fine horizon calibration of existing drilling data, logging presentation and log interpretation, the 70Hz fre- quency division section is preferred for reservoir prediction. Results of reservoir prediction are consistent very well with the existing drilling data. They are used to deploy the evaluation well C55-1 ,which has ob- tained industrial oil. This further shows that spectral decomposition techniques are effective reservoir ex- ploration techniques in the region with Paleogene Formations and can also be used for thin lithologic reser- voirs in other areas.

关 键 词:岩性油藏 薄储层识别 谱分解技术 广义S变换 准噶尔盆地 

分 类 号:P631.4[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象